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SHORT COMMUNICATION 

NUMERICAL PREDICTION O F  TURBULENT FLOW OVER A 
TWO-DIMENSIONAL RIDGE 

F. N. MOUZAKIS AND G. C.  BERGELES 
Laboratory of Aerodynamics, National Technical University of Athens, 42 Patission Str., 10682 Athens, Greece 

SUMMARY 

Predictions are presented of the two-dimensional turbulent flow over a triangular ridge. The time-averaged 
Reynolds equations are written in an orthogonal curvilinear co-ordinate system and transformed to finite 
difference form after discretization in physical space. Turbulence is simulated by the two-equation IC--E model 
of turbulence. In the first part of the paper the basics of the numerical method are presented and in the 
second part comparisons are made between predictions and available laboratory data. Therefore the validity 
and reliability of the method as well as its flexibility in treating complex recirculating flows are assessed. 
Results of engineering significance are presented of the effect of the ridge slope on the length of the 
recirculation region and on the overspeed factor on top of the ridge. 
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INTRODUCTION 

Knowledge of the turbulent flow around surface obstacles is of significant importance in various 
branches of engineering since such flows are common in both natural and technological 
environments. Analytical methods which have been reported, such as the analytical perturbation 
theory of Jackson and Hunt’ and the Sykes method’ based on the matched asymptotic expansion 
theory, are applicable only in non-recirculating flows around gently sloping hills. Finite difference 
methods for the solution of the Navier-Stokes equations expressed in Cartesian co-ordinates 
offer an attractive alternative to previous methods; however, these methods suffer from numerical 
diffusion errors owing to the misalignement of the local velocity vector with respect to the co- 
ordinate line. 

Recent developments in the field of finite differencing, such as the skew upwind differencing 
scheme of Raithby et aL3 and the quadratic upstream interpolation scheme of Leschziner: 
proved to be successful in reducing numerical diffusion errors, although some non-physical 
oscillations and numerical instabilities have been noticed as a result of the negative coefficients 
that appear in the finite difference equations. Also, developments in turbulence modelling, such 
as the Reynolds stress model, led to better predictions of the velocity profile, but this was not 
reflected in any improvement in predicting the reattachment length.’ 

This paper addresses the technological problem of turbulent flow around a ridge. The problems 
of the application of the boundary conditions, which are encountered if a Cartesian co-ordinate 
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system is used, are avoided by using a boundary-fitted orthogonal curvilinear co-ordinate system. 
The use of such a grid also minimizes errors due to numerical diffusion. The method employed 
has already been tested for the cases of gently sloping hills and escarpments by Bergeles;6 
however, in the hills examined the recirculating region was rather limited and it is further 
extended here in flows with large recirculating area. 

MATHEMATICAL FOUNDATION AND NUMERICAL SOLUTION 

Equations and boundary conditions 

The time-averaged Reynolds equations, which express the steady state incompressible turbu- 
lent flow in a two-dimensional flow field, can be written in an orthogonal curvilinear co-ordinate 
system ( 5 ,  q )  as follows: 

continuity equation 

momentum and energy conservation equation 

where 4 stands for the time-mean values of the contravariant velocity components u, u, the 
turbulent kinetic energy K and the turbulence dissipation rate E, S ,  is the source term whose 
analytical expressions are shown in Table I, and h, ,  h, are the spatially varying metric coefficients 
of the curvilinear co-ordinate system. The orthogonal co-ordinate system fitted to the shape of the 
ridge is shown in Figure 1. 

0.0 

x/H 4.0 4.0 0 .o 

Figure 1. Orthogonal curvilinear co-ordinate system around a ridge with a side slope of 2 (enlarged part close to the ridge 
crest) 
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Table I. Analytical expressions for the source terms of the governing equations 

P + PI 

E E 2  
E C, G -  - C,-p 

K K 

Turbulence closure 

The two-equation turbulence model of Jones and Launder’ for the turbulent kinetic energy K 

and its rate of dissipation E is employed. Particular attention is given to the region near the wall; 
the need for a fine numerical grid is avoided in this region by use of the wall function treatment. 
The wall functions represent the physical fluid properties in a Couette flow.* In such a flow, in the 
near-wall region, when the wall pressure gradient is taken into account, the following equations 
are derived: 

T 
T = T + T w  = 1 + p + y + ,  K = -  

Y 
7, pc,o”’ P + Y +  =-PI, 

where p’ = dp/dx is the pressure gradient and K is the turbulent kinetic energy. From the above 
equations we obtain the following expression for the non-dimensional parameter y + : 
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which is incorporated into the normally used wall function expression.* 
Another modification introduced into the turbulence model is an expression for the K--E 

turbulence model parameter c, (normally taken as constant with a value of 0.09). Such an 
expression is suggested by R ~ d i , ~  who, correlating experimental data, proposed a function 
c, = f(P/-E),  where P and E are the production and dissipation of turbulence kinetic energy 
respectively. Although the above function was suggested for improving the reliability of the K--E 

model in predicting weak shear flows, it also improved the results in the present application where 
the flow is strongly perturbed. 

The numerical grid 

For the numerical solution of the governing partial differential equations (1) and (2), an 
orthogonal curvilinear co-ordinate system fitted to the whole integration domain is needed. Such 
a co-ordinate system is obtained, following the method of Theodoropoulos et al.," by solving the 
following set of Laplace equations using a finite differencing scheme: 

where h is the scale factor ratio (i.e. h = h, /h , )  which is given by 

Numerical solution of the equations 

All the governing equations can be cast into the general form of equation (2) for different values 
of the source term S ,  and the coefficient p+ as shown in Table I. By integration according to the 
SIMPLE method," the transport equation is transformed into the finite difference form 

( A t  - Sf$)4p = A$& + A & 4 W  + A t &  + At4S + S U t ,  (5 )  
where 

A$ = A$ + A& + AR + A $ .  

This method has been extensively used by various workers in a variety of applications.6*"-'3 
The grid-independent results which are presented have been obtained with a numerical grid of 

97 x 35 points. The calculations have been performed on a CDC Cyber 171-8 mainframe 
computer, where the code required 9000 CPU seconds execution time and 410 OOO B loader field 
length. 

PRESENTATION AND DISCUSSION OF RESULTS 

Detailed measurements of the flow field around a triangular ridge have been reported by Arya 
and Shipman.I4 The experiments were conducted in a wind-tunnel and the mean velocity and 
turbulence measurements were made with hot wire anemometers in conjunction with boundary- 
layer-type crossed hot film probes. 

The orthogonal curvilinear co-ordinate system that covers the whole integration domain and 
fits to the shape of the ridge is shown in Figure 1. The slope of the ridge side is 2: 1 and its height is 
equal to one-tenth of the boundary layer thickness of the undisturbed approaching flow. For the 
complete simulation of the experiments the velocity profile at the inflow boundary was selected to 
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be the same as that measured by Arya and Shipman14 at the same location upstream of the ridge. 
When examining cases where the flow field boundaries retain continuity of the second spatial 

derivative and a decent numerical grid is used, the assumption that the grid lines are straight 
between two adjacent grid nodes is a reasonable one and in accordance with the discretization 
process of equation (2). 

However, in cases where the boundary slopes do not retain continuity, such as on the top of the 
ridge, the above assumption leads immediately to a considerable underestimation of the curva- 
ture of the grid lines, particularly for the computational cells near the ridge peak. 

The curvatures of the grid lines, i.e. (l /Axi)(8xi/8xi),  are usually estimated by the simple 
formula A(Axi)/As, where Axi is the distance between two adjacent grid points along the 
i-direction and As is area of the cell around the point where the curvature is being calculated. The 
magnitudes of Axi, however, are accurately estimated when the constant-? lines over the ridge 
peak are approximated by a cubic spline (which passes through the computed grid points). This 
procedure, in conjunction with the use of a fine mesh around the sharp ridge peak, improved the 
accuracy of the results compared to experiment. 

The predictions, by examination of the pressure coefficient (C,) contour diagram in Figure 2, 
show that the presence of the ridge has an effect on the flow that starts at least 8 ridge heights 
upstream (location of the 10% contour) and causes the approaching flow to respond to an 
adverse pressure gradient. Also seen are the strong streamwise pressure gradient on top of and 
immediately after the ridge and the flow recovery to the ambient pressure downstream of the 
ridge. A parabolic type of flow can only been seen after 14 ridge heights past the ridge, where the 
pressure across the flow is small and constant (location of 5% contour value). 

From the streamline plots in Figure 3, the cavity region that starts from the ridge top has a 
length of 10H whereas its maximum height is approximately 15H, where H is the ridge height. 
Beyond the cavity a new wall shear layer starts developing whose thickness increases with 
distance downstream of the ridge. 

In the experiment of Arya and Shipman14 the cavity region, which was established by smoke 
visualization, was found to extend 13H in the longitudinal direction with a maximum height of 
2.5H. From their velocity measurements, however, it seems that the length of the recirculation 
region cannot be larger than 8H, since already at this location a positive velocity is measured. In 
the measurements reported by Bergeles and Athanas~iadis,'~ where the recirculating bubble 

-0. 0. 10. W'H 20 

Figure 2. Pressure coe5cient contour diagram: C, = ( p  - p , ) / f p U i  
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Figure 3. Streamlines of the flow over the ridge (ambient velocity 8 ms-')  

PREDlCTlONAL 
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Figure 4. Velocity profiles at various locations relative to the ridge 

around a surface-mounted square obstacle was established in a similar way (smoke and tufts), the 
recirculating bubble had a height of 2-2 H and extended 11 H downstream. Thus the differences in 
the cavity dimensions that appear between the predictions and the measurements are primarily 
due to the uncertainty of the measuring method, whose accuracy according to Arya and 
ShipmanI4 is anything within 15%. Furthermore, from the numerical point of view, the inevitable 
non-orthogonality that appears at the top of the ridge, and consequently affects the arithmetic 
solution, as well as the turbulence model utilized, which is known to have the tendency to 
underpredict the length of the recirculating regions in flows where steep velocity gradients 
appear,5 are possible sources of error. 

In Figure 4 comparisons are made between the predicted (also in Figure 6) and measured 
velocity profiles at various locations. At x / H  = - 12 the experimental data were used as a 
boundary condition for the numerical solution and consequently they coincide. Around the top of 
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Figure 5. Reynolds stress profiles at various distances relative to the ridge 

the ridge (x/H = 0) there is agreement between predicted and measured profiles, except just over 
the top of the ridge where the velocity is slightly underpredicted. 

At x / H  = 8 the predicted flow is characterized by a negative mean velocity in the wall region, 
since this position is within the predicted cavity region. The reverse flow is predicted to have a 
height of 05H at this location. However, the measuring method with hot wire anemometers is 
incapable of detecting reverse flow and consequently in that region the experimental procedure 
fails to give the correct flow direction; thus the result conflicts with the fact that the flow 
visualization technique gave a cavity length of 13H. Outside the bubble region ( y / H  > 1-4) the 
velocity field is in agreement with the measurements. 

In Figure 5 the predicted and measured Reynolds stress profiles are compared. The com- 
parison indicates reasonable universality of the K--E model for the near-wall flow but severe 
underprediction of the stresses in wake-type flows. This reinforces the previous argument as 
regards the rate of velocity recovery in the wake region. 

Results for a constant c,-value (0.09) have also been obtained. The major effect of the use of a 
function for estimating c, instead of using a constant value is assessed by inspection of Figure 6, 
which presents the velocity profile results for the case where c, is constant. The cavity bubble 
length is found to be shorter, approximately 9H, while the rate of velocity recovery is further 
underpredicted. 

Another point that proved to be essential in this study was the modifications utilized for the 
correct estimation of the curvature of the grid lines near the peak of the ridge. The results 
obtained without the above modification (c, was constant also) are also presented in Figure 6 in 
the form of velocity profiles. The cavity bubble length is further decreased (almost 8 H) while the 
predicted velocities differ considerably from the experimental data. 

Further application of the method for flows over triangular ridges with side slopes ranging 
between 1 and 0.125 shows that the slope of the side wall of the ridges is a basic parameter for 
many flow characteristics, such as the velocity overspeed, the dimensions of the recirculating 
bubble and the extent of upstream pressure effects. 

In Figure 7 the mean velocity profiles for four different ridges with varying side slope and for 
two locations relative to the ridge are shown. The decrease of the velocity deficit with smaller 
slope is obvious. As shown in Figure 8, with the decrease of side slope the length of the 
recirculation zone is drastically decreased; however, as the side slope increases beyond a value of 2 
the length of the cavity is becoming independent of the side slope. In the same figure the 
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Figure 6. Comparison of velocity profiles at various 
locations relative to the ridge between different numerical 

solutions 
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Figure 7. Velocity profiles at various locations relative 
to the ridge for ridges with different side slope 

RIDGE SIDE SLOPE 

Figure 8. Reattachment length and overspeed factor (at x / H  = 0 and y / H  = 1.5 relative to the ridge) versus ridge side 
slope 
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overspeed factor, namely the ratio of the velocity 05H above the ridge top to the velocity at the 
same elevation in the undisturbed boundary layer, is also presented. The results confirm that 
gently sloping hills produce a higher overspeeding factor on top and that there must be a 
maximum value of velocity overspeed at slopes around 0.4. 

CONCLUSIONS 

This paper has presented results of a numerical study in solving the two-dimensional time- 
averaged Reynolds equations for incompressible steady state flows over a ridge. The equations 
are written in an orthogonal curvilinear co-ordinate system and are solved by use of a finite 
differencing scheme. The set of governing equations is closed with the addition of the two- 
equation K--E turbulence model. The method uses orthogonal curvilinear co-ordinate systems, 
which guarantees simplicity in the application of the boundary conditions, accurate representa- 
tion of the shape of the boundary geometry and reduction of the numerical diffusion. Also, the 
introduction of accurate estimation of the curvature of the grid lines near the points of the second 
spatial derivative discontinuity on the boundaries turned out to be of major importance, since it 
had a direct effect on the dimension of the recirculating region. The use of a variable turbulent 
parameter c,, according to the formula prescribed by Rodig also improved the reliability of the 
results. 

The validity of the method has been assessed by comparing the predictions with measurements 
for the flow over a ridge. The method predicts the measurements reasonably accurately. The 
differences that have been found are attributed to the inevitable non-orthogonality which appears 
at the integration cell just over the ridge top and to the turbulence model deficiency in regions of 
steep velocity gradients and strongly curved streamlines. However, differences between predic- 
tions and measurements may also be attributed to high experimental uncertainties associated 
with the measuring technique in flows of high levels of turbulence. 

A? 

P 
P 
P 
K, -E 
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- pu’ v’ 
Pt 
P+ 
Y+ 

APPENDIX: NOMENCLATURE 

coefficient in finite difference equations linking the central node P with the 
adjacent node i (=  E, S, N, W) for the dependent variable 4. 
source term for the dependent variable 4 
Cartesian co-ordinates 
co-ordinate distances in the curvilinear system 
metric coefficients for the directions 5 and q respectively of the co-ordinate 
system 
ratio of metric coefficients of the curvilinear co-ordinate system, h,/h, 
velocity components along the directions 5 and q respectively of the co-ordinate 
system 
pressure 
density of the fluid 
dynamic viscosity of the fluid 
turbulent kinetic energy and its rate of dissipation respectively 
shear stress in boundary layer 
Reynolds shear stress 
turbulent viscosity of the fluid 
dimensionless pressure gradient parameters 
dimensionless normal distance co-ordinate* 
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= I c y  =E 

2, 
C,, C,,  C2 
H height of the ridge 

diffusion constants of K and E respectively 
ratio of local to wall values of shear stress 
constants of the K--E turbulence model 

Subscripts 

P, N, S, E, W 
4 
t turbulent flow 
W wall conditions 
CQ free stream conditions 

central and neighbouring nodes of the grid 
dependent variable (i.e. u, D, K, E )  
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